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Abstract

Phase-plane techniques are used to analyze a quadratic system of ordinary differential
equations that approximates a single relaxation-time system of partial differential equations
used to model transient behavio: of highly elastic non-Newtonian liquids in shear flow
through slit dies. The latter one-dimensional model is derived from three-dimensional
balance laws coupled with differential constitutive relations well-known by rheologists.
The resulting initial-boundary-value problem is globally well-posed and possesses the key
feature: the steady shear stress is a non-monotone function of the strain rate. Results of
the global analysis of the quadratic system of ode's lead to the same qualitative features
as those obtained recently by numerical simulation of the governing pde's for realistic
data for polymer melts used in rheological experiments. The analytical results provide
an explanation of the experimentally observed phenomenon called spurt; they also predict
new phenomena discovered in the numerical simulation; these phenomena should also be
observable in experiments.
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1. Introduction

The purpose of this paper is to analyze novel phenomena in dynamic shearing flows
of non-Ne.tonian fluids that are important in polymer processing [17]. One striking phe-
norenon., called "spurt," was apparently first observed by Vinogradov et al. [19] in ex-
periments concerning quasi static flow of monodispersive polyisoprenes through capillaries
or equivalently through slit dies. They found that the volumetric flow rate increased dra-
matically at a critical stress that was independent of molecular weight. Until recently,
spurt has been associated with the failure of the flowing polymer to adhere to the wall [5].
The focus of our current research is to offer an alternate explanation of spurt and related
phenomena.

Understanding these phenomena has proved to be of significant physical, mathemati-
cal. and computational interest. In our recent work [12], we found that satisfactory expla-
nation and modeling of the spurt phenomenon requires studying the full dynamics of the
ecuaticns of motion and constitutive equations. The common and key feature of constitu-
tive models that exhibit spurt and related phenomena is a non-monotonic relation between
the stead%- shear stress and strain rate. This al ,.vs jumps in the steady strain rate to form
when the driving pressure gradient exceeds a critical value; such jumps correspond to the
sudden increase in volun.etric flow rate observed in the experiments of Vinogradov et al.
The governing systems used to model such one-dimensional flows are analyzed in [12]
by numerical techniques and simulation, and in the present work by analytical methods.
The systems denive from fully three-dimensional differential Constitutive relations with rn-
re'axation times (based on work of Johnson and Segalman [S and Oldroyd (161). They
are evolutionary, globally well posed in a sense described below, and they possess discon-
tinuous steady states of the type mentioned above that lead to an explanation of spurt.
The governing systems for shear flows through slit-dies are formulated from balance laws
in Sec. 2.

Specifically. we model these flows by decomposing the total shear stress into a polymer
contribution. evolving in accordance with a differential constitutive relation with a single
reaiadon time and a Newtonian viscosity contribution (see system (JSO) in Sec. 2.). The
flows can also be modeled by a system based on a differential constitutive law with two
widely" spaced relaxation times (see system (JSO,) in [13].) but no Newtonian viscosity
contribution. Numerical simulation [9. 12] of transient flows at high Weissenberg (Debo-
rai number and very low Reynolds number using the model (JSO) exhibited spurt, shape
memor'.', and hysteresis: furhermore. it predicted other effects, such as latency, normal
stress oscilations, and molecular weight dependence of hysteresis, that should be analysed
further and tested in rheological experiment. 'or

In earlier work. Hunter and Slemrod [71 used techniques of conservation laws to study
the qualitative behavior of discontinuous steady states in a simple one-dimensional vis-,
coeiastIc model of rate type with viscous damping. They predicted shape memory and
hysteresis effects related to spurt. A salient feature of their model is linear instability and
loss of evoiutionaiity in a certain region of state space.

The objective of the present paper is to develop analytical techniques, the results of '/
which verifv these rather dramatic implications of numerical simulation. Based on scaling .V Codes

introduced in [12], appropriate for tlhe highly elastic and very viscous polyisoprenes used in ndlor
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the spurt-experiment, we are led to study the following pair of quadratic autonomous ordi-

nary diferential equations that approximates the governing system (JSO) in the relevant

range of physical parameters for each fixed position in the channel:

S=(Z + 1) - '
~(1.1)

Here the doc denotes the derivative d/dt, T is a parameter that depends on the driving

pressure gradient as well as position z in the channel, and e > 0 is a ratio of viscosities.
Sy .... (i) is obtained by setting a = 0 in the momentum equation in system (JSO); this

approximation is reasonable because a is at least several orders of magnitude smaller than

6. We show that steady states of system (JSO), some of which are discontinuous for non-

monotone constitutive relations, correspond to to critical points of the quadratic system.

We deduce the local characters of the critical points, and we prove that system (1.1) has

no periodic orbits or closed separatrix cycles. Moreover, this system is endowed with

a natural Lyapunov-like function with the aid of which we are able to determine the
global dynamics of the approximating quadratic system completely and thus identify its

go ballv asvmptotically stable crical points (i.e. steady states) for each position z. This

analysis is carried out in Sec. 3 When a, the ratio of Reynolds to Deborah numbers, is

strictly positive, the stability of discontinuous steady states of system (JSO) remains to

be settled. Recently, Nohel, Pego and Tzavaras (151 established such a result for simple

model in which the polymer contribution to the shear stress satisfies a single differential

constitutive relation: for a particular choice, their model and system (JSO) with a > 0

have the same behavior in steady shear. Their asymptotic stability result, combined with

numerical experiments and research in progress, suggest that the same result holds for the

full system (JSO), at least when a is sufficiently small.

In Sec. 4..the analysis of Sec. 3. is applied to eac' runit x in the channel. allowing

us to ex:piain spurt. shape memory, hysteresis, and othc: ef.ects originally observed in the

numerical simulations in terms of a continuum of phase r raits. We discuss asymptotic

expansions of soluzions of systems (JSO) and (JSO) of Ref. [13] in powers of 6 that enable

us to explain latenc. (a pseudo-steady state that precedes spurt). The asymptotic analysis

also per.-nits a more quantitative comparison of the dynamics of the two models when ., is

su.rcientlv small. In Sec. 5., we discuss physical implications of the analysis, particularly

those that suggest new experiments. In Sec. 6.. we draw certain conclusions. Although the

analysis in this paper applies only to the special constitutive models we have studied, we

expect that the qualitative features of our results appear in a broad class of non-Newtonian

fluids. Indeed. numerical simulation by Nolkka and Ierley [10] using another model with a

single relaxation time and Newtonian viscosity exhibits very similar character.
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2. A Johnson-Segalman-Oldroyd Model for Shear Flow

The motion of a fluid under incompressible and isothermal conditions is governed by
the balance of mass and linear momentum. The response characteristics of the fluid are
emboded in the constitutive relation for the stress. For viscoelastic fluids with fading

memory, these relations specify the stress as a functional of the deformation history of the
fluid. Many sopisticated constitutive models have been devised; see Ref. [21 for a survey.
Of particular interest is a class of differential models with m-relaxation times, derived in a
thee--..ensional settlng in Refs. [12] and [13]; these models can be regarded as a special
cases o tne Johnson-Segalman model [SIwhen the memory function is a linear combina-
tion of m.-decay-ing exponentials with positive coeEfcients or of the Oldroyd differential
consti:utive equation [161.

ESsen.a:i properties of constitutive relations are exhibited in simple planar Pciseuille
shea- flow. We study shear flow of a non-Newtonian fluid between parallel plates, located
at = './2. with the flow aligned along the y-axis, symmetric about the center line, and
d:ien by a constant pressure gradient f. We restrict attention to the simplest model of a
sin2>e re.-,:at:ion-time differential model that possesses steady state solutions exhibiting a
non-monotone reation between the total steady shear stress and strain rate, and thereby
reprocuces spi and related phenomena discussed below. The total shear stress T is
ciecomDose" into a polymer contribution and a Newtonian viscosity contribution. When
restricted to one space dimension the initial-boundary value problem, in non-dimensional
unIts .i-h dis-tance scaled by h, governing the flow can be written in the form (see Refs. [9,
121):

a v t - a0z =- ~v.. + f
- (Z + 1)v, (JSO)

Zt + 'v = -Z

on the inte.--.al [-1/2.0], with boundary conditions

v(-1/2, t) = 0 and v,(O,t) = 0 (BC)

and initial conditions

vuo(0) , a(x. 0) = a0(x) and Z(x, 0) = Zo(x) on - 1/2 < x < 0: (IC)

s"rater-.e- of the How and comDatibilitv with the boundary conditions requires that
,v1/2 0. K,(0) = 0 and no(0) = 0.

The e'.'oiution of 7. the polymer contribution to the shear stress, and of Z, a quantity
proportional to the normal stress difference, are governed by the second and third equations
in system (.ISO). As a result of scaling motivated by numerical simulation and introduced
in Ref. [l2 , there are only three essential parameters: a is a ratio of Reynolds number to
Deborah number, is a ratio of viscosities, and f is the constant pressure gradient.

When = 0. and Z + 1 > 0, system (JSO) is hyperbolic, with characteristics speeds
-(Z .)/ai/ 2 and 0. Moreover, for smooth intial data in the hyperbolic region and

compatible with the boundary conditions. techniques in (181 can be used to establish
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global wel.-posecness (in te,-ms of classical solutions) if the data are small, and finite-
time blow-up of classical solutions if the data are large. If E > 0, system (JSO) for any
smooth or piece-wise smooth data: indeed, general theory developed in [15] (see Sec. 3
and panticularl;" Appendix A) yields global existence of classical solutions for smooth
ir-:ial data of arbitrary size. and also existence of almost classical, strong solutions with
~:sc "'';i: es in the initial velocitv gradient and in stress components; the latter result
allows one to prescribe discontinuous initial data of the same type as the discontinuous

steaa'. states studied in this paper.
Tire s.ead-.-sta:e solutions of system (JSO) play an important role in our discussion.

Such a solution, denoted by T', , and Z, can bc described as follows. The stress components
7 and Z are related to the strain rate through the relations

5=Z +z Z 1 (2.1)

Therefore. the steady total shear stress T := 7 + c7, is given by T = w(1.), where
S

W(s) - +s 2 +s " (2.2)

The properties of w., the steady-state relation between shear stress and shear strain
rate, are cruciil to the behavior of the flow. By symmetry, it sui.ces to consider s > 0.
For all _z > 0. the function w has inflection points at s = 0 and s = / When E > 1/S.
the fitction wu is strictly increasing, but when E < 1/S. the function w is not monotone.
Lack of monotonicity is the fundamental cause of the non-Newtonian behavior studied in
this paper: hereafter we assume that S < I/S.

The graph of w is shown in Fig. 1. Specifically. w has a maximum at s = sm
and a r'inimum at s = Sn, where it takes the values TN1 := w(s ,q) and T, := w(sm)

reS:ecVe.. As - 1/s, the two critical points coalesce at s = .
The momentum equation. together witb the boundary condition at the centerline.

InDiies t hac the st-adv total shear stress satisfies T = -fx for every x E 01. Therefore,
the steady velocity gradient can be determined as a function of x by solving

w( ) = -f7 • (2.3)
Ejuivalentv., a steady state solution -U satisfies the cubic equation P(9.) = 0. where

P(s) := s - T s + (I +)-T. (2.4)

The steady velocitv profile in Fig. 2 is obtained by integrating ' and using the boundary
condi:on at the .wail. However. because the function w is not monotone, there might
be uo to thre distinct values of U, that satisfy Eq. (2.3) for any particular x on the
inter-al -l,2.01. Consequently. "U, can suner jump discontinuities. resulting in kinks in

the :e ioit-v. profJe (as at the point x. in Fig. 2). Indeed. a steady solution must contain
sucH a jump if the total stress Twa = f/2 at the wall exceeds the total stress T,! at the
local ma:.imum .11 in Fig. 1.

Finaly. we remark that the flow problem discussed here can also be modelled by a
system based on a differential constitutive law with two widely spaced relaxation times
but no N'\ewtonian viscosity contribution (see system (JSO ) in Sec. 2. of [13]); with an
appropriate choice of relevant parameters. the resulting problem exhibits the same steady
states and the same characteristics as (JSO).
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Fig. 1: Total steady shear stress T vs. shear strain rate F, for
steady flow. The case of three critical points is illustrated; other
possibilities are discus- u in S,-c. 3.

3. Phase Plane Analysis for System (JSO) When a = 0

When ce is riot zero. numerical simulation developed in [9, 11, 121 discovered striking
phenomena in shear flow and suggested the analysis that follows. A great deal of infor-
mation about the structure of solutions of system (J50) can be garnered by studying
a quadratic system of ordinary differential equations that approximates it in a certain
parameter range. the dynamics of which is determined completely. Motivation for this ap-
proximation comes from the following observation: in experiments of Vinogradov et al. [19],
a is of the order 10-12; thus the term avt in the momentum equation of system (JSO)
is negligible even when vt is moderately large. This led us to the approximation to sys-
tem (JSO) obtained when a = 0.

hen a = 0, the momentum equation in system (JSO) can be integrated to show
that the total shear stress T := a + .v. coincides with the steady value T(x) = -fx. Thus
T = T(r) is a function of z only, even though o- and u, are functions of both x and t. The
remaining equations of system (JSO) yield, for each fixed z, the autonomous, quadratic,
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Fig. 2: Velocity profile for steady flow.

pianar system of ordinary differential equations

(Z +1) (T C - (3.1)

Here the dot denotes the derivative d/dt. We emphasize that for each f, a different

&namical system is obtained at each x on the interval [-1/2. 0] in the channel because

T = -,Fz. By syminetry, we may focus attention on the case T > 0; also recall from Sec. 2

that Z < 1/8: these are assumed throughout. The dynamical system (3.1) can be analyzed

completely by a phase-plane analysis outlined below; the reader is referred to Sec. 3 in [13]

for further details. Here we state the main results.

The critical points of system (3.1) satisfy the algebraic system

(Z +I1+) - l) + =0,

(T (3.2)
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These equations define, respectively, a hyperbola and a parabola in the a-Z plane; these
cun;es are drawn in Fig. 3, which corresponds to the most comprehensive case of three
critical points. The critical points are intersections of these curves. In particular, critical
points lie in the strip 0 < a < T.

A

Z =0

C B,

Fig. 3: The phase plane in the case of three critical points.

Eiminatin, Z in these equations shows that the o-coordinates of the critical points
satisf- the cubic equation Q(a/T) = 0, where

A straightforward calculation using Eq. (2.4) shows that

pT- (=.~ -P~/ (3.4)

Thus each critical point of the system (3.1) defines a steady-state solution of system (JSO):
such a solution corresponds to a point on the steady total-stress curve (see Fig. 1) at wbich
the total st.ess is T(x). Consequently, we have:

-8-



Proposition 3.1:
For each position x in the channel and for each I- > 0, there are three possibilities:
(1) there is a single critical point A when T < Tm;
(2) there is also a single critical point C if T> Tvf:
(3) there are three critical points A, B, and C when T < T < "T,..

For simplicity, we ignore the degenerate cases, where T = TM or T = T, in which
two cri:ical points coalesce.

To de:ermne the qualitative structure of the dynamical system (3.1), we first study
the nature of the critical points. The behavior of orbits near a critical point depends
on the lineaization of system (3.1) at this point, i.e., on the eigenvalues of the Jacobian
matix J associated with Eq. (3.1), evaluated at the critical point. To avoid solving the
cubic ecuation Q(,/T) = 0, the character of the eigenvalues of J can be determined from
the sizns of the trace of J denoted by Tr J, the deterrminant of J denoted by Det J. and
the discr:.rninant of J denoted by DiscrmnJ at the critical points. We omit these tedious
calculations, a result of which is a useful fact: at a critical point, 6 Det J = Q'(or/T). This
relation is important because Q' is positive at A and C and negative at B. To assist the
reader, Fig. 3 shows the hyperbola on which & 0, the parabola on which Z = 0 [see
Ecs. ('3.2)], and the hyperbola on which DiscrmJ vanishes. As a result of the analysis
above. we draw the following conclusions:
(1) TrJ < 0 at all critical points:
() Det J > 0 at A and C, while Det J < 0 at B; and
(3) DiscrmJ > 0 at A and B, whereas DiscrmJ can be of either sign at C. (For typical

* values of _x and T, Discrm J < 0 at C; in particular DiscrmJ < 0 if C is the only
c.iIcal point. But it is possible for Discrm J to be positive if T is sufficiently close to

Standard theory of nonlinear planar dynamicai systems (see. e.g., Ref. [3, Chap. 151) now
estabilshes the local characters of the critical points A. B, C in Proposition 3.1:

Proposition 3.2:
(1 ) A is an attracting node (called the classical attractor);
(2) B is a saddle point:
(3) C is either an attracting spiral point or an attracting node (called the spurt attractor).

The next task is to determine the global structure of the orbits of system (3.1). In
this direc:ion. we modify an argument suggested by A. Coppel [41 and establish the cru-
cial result. the proof of which involves a change in the time scale and an application of
Bendixson's theorem:

Proposition 3.3:
System (3. 1) has neither periodic orbits nor separatrix cycles.

To understand the global qualitative behavior of orbits. we construct suitable invariant
sets. In this regard. a crucial tool is that system (3.1) is endowed with the identity (3.1)

d 2 +(z + )2  -2[ 2 +(z + )2 - (3.)
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..-- ct on ' 2) := o-2(Z -!) serves as a Lyapunov function for the dynamical
st5'em. Notice t-,- -dentit;- (3.5) is independent of T and E.

LT F deno:e the circle on which the right side of Eq. (3.5) vanishes, and let C, denote
tee circ'e &,i radi's r centered at a = 0 and Z = -1. i.e. C, := {(a, Z) : V(a, Z) = r, r > 0};
each Cr is a level set of V. The circles F and Ci are shown in Fig. 4, which corresponds

case of1 a sinzie critical point, the spiral point C. Eq. (3.5) also implies the critical
pcns o: system (3.1) lie on F. If r > 1, F lies strictly inside Cr. Consequently, Eq. (3.3)

s-.S that the dvnamical system (3.1) flows inward at points along C,. Thus the interior
C: C :s a -,s:-::e-:-' ant set for each r > 1. Furthermore, the closed disk bounded by
C . wVa:cnu Is tne intersect:on of these sets, is also positively invariant. Therefore the above
ar.]'mne_: i' estDu.sn~es:

Proposition 3.4: Each closed disk bounded by the circle Cr,r > 1 is a positively
a-:n- se: Ior t:e s '"Se (3. 

T"e ah;,-e resLts combined with identaqcation of suitable invariant sets were used to
S-.ertrie the z.o'a, st:r-cte of the orbits of system (3.1) in the cases of one and three
c.-: -i c:"z and to a-nalze the stable and unstable manifolds of the saddle point at B.
T"e'. . - e snowvn in F 4 s. 5 anid 6 and sumrne".zed in the following result.

Proposition 3.5:
'f a.tract:on of.-. i.e.. the set of points that Sow toward A as t - oc. cornpr.ses

tLmo side of te stable manLrold of B as is A: points on the other side

a.. , ,: ot atracton of C. Aforfover. the arc of the circle F through the origin.
B7? ...... B' is cot. 1.i.ed4 in the basin of attraction of A. In particular.

...:-. d : (r B cannot cross its boundary, so that it cannot cross F between B

.4'" '-:'... '-. '.r, of t e dayncmic3 of .3ytem (2.1) (except possibly whether C is a
r,;,ic .v r~. o,::, , overt to one that av:rozrmates th'e system (J'O50) in the case of two

~azat:on ~..nes (see systemn (4.2) in /13!).
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Fig. 4: The phase plane when the spurt attractor C is the only
critical point.

4. Qualitative Features of (JSO) Based on Phase Plane Analysis

T-e discussion that fu"lows sketches an explanation of recent numerical simulations of
(JSO)' described in Refs. [9, 121. These exhibited several effects related to spurt: latency,
shace memory,. and hysteresis. Fig. 7 shows the result of simulating a "quasi-static"
load ; sequence in which the pressure gradient 7 is increased in small steps, allowing
su.zFcien: time between steps to achieve steady flow [9]. The loading sequence is foilowed
by a similar quasi-static unloading sequence. in which the driving pressure gradient is
decrea.sed in steps. The initial step used zero initial data. and succeeding steps used the
results of the previous step as initial data. The resulting hysteresis loop includes the shape
mermory: predicted by Hunter and Siemrod [7] for a simpler model by a different approach.
The width of the hysteresis loop at the bottom can be related directly to the molecular
we;ltf of the sample [91.

We explain spurt, shape memory, hystere-sis and latency. We consider experiments
of the following type: the flow is initially in a steady state corresponding to a forcing
f , and the forcing is suddenly changed to f = f 0 + Af. We call this process "loading"
(resp. "'unloading") if Af has the same (resp. opposite) sign as f 0 . The initial flow can

be described by specifying, for each channel position x, whether the flow is at a classical
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z

z 0

0

D 0=.6

= 0.005

C

Fig. 5: The orbit through origin when the spurt attractor C is the

only critical point.

attractor .4 (z is a "classical p *nt") or a spurt attractor C (x is a "spurt point") for the

system (3.I) with T = - 0 z. We shall say that any point lying on the same side of the

stable manifold of B as is .4 lies on the "classical side"; points lying on the other side are

said to be on the "spurt side." The outcome of the experiment depends on the character of

the phase portrait with T = -fx. To determine this outcome, we need only decide when

a classica point becomes a spurt point or vice versa.

The principle mathematical properties of the dynamical system (3.1) that determine

the outcome of loading and unloading experiments are embodied in the following conse-

quence of the phase plane analysis.

Proposition 4.1:

(1) A classical point io for the initial forcin7 f7 lies in the domain of attraction of the

c.assical attractor . , provided that A eists (i.e., IfxI < TM);

(2) A spurt point C j oro ,,e initial forcing 70 lies in the domain of attraction of the spurt

actractor C for Y unless (a) C does not exist (i.e., 17xI < T,,); or (b) C lies on the

classical side of the stable manifold of the saddle point B for f.

Consider starting with 7o = 0 and loading to 7> 0. Thus the initial state for each x

-12-
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01 Ta

T=0.0

A =0.015

S -1

Fig. 6: Phase portrait in the case of three critical points, with C

being a spiral.

lies at the orzin a = 0, Z = 0. Then according to 4.1(1) above, each z E [-1/2, 0] such
that fizi < T is a classical point, while the x for which fixI > Tm axe spurt points

(because there is no classical attractor). Consequently, we draw two conclusions:

Proposition 4.2:
(a) f che forcing is subcriticl (i.e., 7 < Ci := 2Tvf), the asymptotic steady flow is

entirely classical.
(b) If the forcing is supercritical (7 > fri), there is a single kink in the velocity profile

(see Fig. 2), located at z. = -T/f; those x E [-1/2, z), near the wall, are spur-t

points, wnereas z E (x., 01, near the centerline, are classical.

The soiution in case (b) can be described as "top jumping" because the stress T. = Tm

at the kink is as large as possible, and the the kink is located as close as possible to the

wall.
Next, consider increasingthe load from 7o > 0 to 7 > fo. A point x that is classical

for f 0 remains classical for f unless there is no classical attractor for T = -fz. i.e.,

7Iz > T M. A spurt point x for f 0 , on the other hand, is always a spurt point for f. As

a result. a point in x in the channel can change only from a classical attractor to a spurt

-13-
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Fig. 7: Hysteresis under cyclic load: normalized throughput 6Q
vs. wall shear stress Twil [91.

attractor. and then only if fTzj exceeds TW. When f is chosen to be supercritical, loading
causes the position z. of the kink in Fig. 2 to move away from the wall, but only to the
extent that it must: a single jump in strain rate occurs at x. = -TM/f, where the total
stress is T. = TVt. These conclusions are valid, in particular, for a quasi-static process of
gradually increasing the load from f0 = 0 to f7> fit-

Now consider unloading from f 0 > 0 to f < f 0 ; assume, for the moment, that f is
positive. Here, the initial steady solution need not correspond to top jumping. For this
type of unloading, a point z that is classical for f7 always remains classical for f: the
classical attractor foz f exists because fizi < foIxl. By contrast, aspurt point x for fT
can become classical at f. This occurs if: (a) the total stress T = -fz falls below Tm; or
(b) the spurt attractor Co for T = -f 0 x lies on the classical side of the stable manifold of
the saddle point B for T = -.fx (see Proposition 4.1(2b)).

Combining the analysis of loading and unloading leads to the following summary of
quasi-static cycles and the resulting flow hysteresis.

Kinki move away from the wall under top jumping loading; they move toward the wall
under bottom jumping unloading; otherwise they remain fixed. The hysteresis loop opens
from the point at which unloading commences; no part of the unloading path retraces the

-14-



locJ,- a u nt;Z poin t d in Fig. 7.
To explain the latency ef.ect that occurs during loading, assume that c is small. It is

readily seen that the total stress TM at the the local ma'imum M'I is 1/2 + O(e), while
the local nrinimun_ m corresponds to a total stress T, of 2vrE [1 0(E)]. Furthermore,
for z sucn that T(z) = 0(I), a= T + 0(z) at an attracting node at A, while a = O(e)
at a spurt attractor C (which is a spiral). Consider a point along the channel for which
T(r') > T.I, so that the only critical point of the system (3.1) is C, and suppose that that
T < 1. Then the evolution of the system exhibits three distinct phases, as indicated in
Fig. 6: an initial ".Newtonian" phase (0 to V); an intermediate "latency" phase (N to 5);
and a final "spurt" phase (S to C).

The "Newtonian phase occurs on a time scale of order E, during which the system
approxo tateiy follows an arc of a circle centered at o- = 0 and Z = -1. Having assumed
that T < 1, Z approaches

Z- = (1 _ T-)-1_ 1 (4.1)

as o rises to the value T. (If, on the other hand, T > 1,the circular arc does not extend
as f-ar as T, and o never attains the value T; rather, the system slowly spirals toward the
sourt attractor. Thus the dynamical behavior does not exhibit distinct phases.)

The latency phase is characterized by having 0- = T+O(e), so that a is nearly constant
and Z evolves approximately according to the differential equation

-Z. (4.2)
Z+l

Therefore, the shear stress and velocity profiles closely resemble those for a steady solution
ih no sour:. but the solution is not truly steady because the normal stress difference

Z still chan-es. Integratin- Eq. (4.2) from Z = ZN to Z = -1 determines the latency
period. This period becomes iciefinitely long when the forcing decreases to its critical
vaiue: thus the persistence of the near-steady solution with no spurt can be very dramatic.
The soiution remains longest near point L where Z = -1 +T. This point may be regarded
as the remnant of the attracting node A and the saddle point B. Eventually the solution
enters the spurt phase and tends to the crinical point C. Because C is an attracting spiral.
the stress oscillates between the shear and normal components while it approaches the
steady state.

Asymptotic analysis carried out in Sec. 6 of [13] shows that when 5 is sufficiently
small. system (JSO02 ) of [131 has the same asymptotic properties as system (JSO). Thus
system (JSO) approximates (JSO2 ) quantitatively as well as qualitatively.
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5. Physical Implications

One of the widely accepted explanations of spurt and similar observations is that the
presence of the wail affects the dynamics of the polymer system near the wall. Conceivably,
there could be a varety of "wall effects," the most obvious is the loss of chemical bond
between wall and fluid, or wall slip [3]. Perhaps the most distinguishing feature of our
alternative approach is: it predicts that spurt stems from a material property of the
polymer and is not related to any external interaction. The spurt laver forms at the wall
in situations such as too jumping because the stresses are higher there; for the same reason,
of course, is che-mical bonds would break at the wall;however, our approach predicts that
the layer of spur" points spreads into the interior of the channel on continued loading.
Layer thickness is predicted to grow continuously in loading to a thickness that should be
observable, provided secondary (two-dimensional) instabilities do not develop.

Our analysis suggests other ways in which experiments might be devi-.d to verify
the dependence of spurt on material properties: (i) produce multiple kinks with spurt
laver separated from the wall, (ii) produce hysteresis in flow reversal (Fig. 9). Our model
predicts circumstances under which a different path can be followed in sudden reversal of
the low than would be followed by a sequence of solutions in which the pressure gradient
is reduced to zero and reloaded again (with the opposite sign) to a value of somewhat
smaller magnp.itude. Such behavior does not seem likely to be explainable by a wall effect.

The most imoortant and perhaps the easiest experiment to perform to verify our the-
or-., is to produce latency. Our analysis predicts long latency times for data corresponding
to reaistic material data: no sophisticated timing device would be required, nor would the
onset of the instability be hard to identify. The increase in throughput is predicted to be
so dramatic that simple visual inspection of the exit flow would probably be sufficient.

6. Conclusions

Although our analysis applies only to the special constitutive models we have studied.
we exect: that the qualitative features of our results appear in a broad class of non-
Newtonian fluids. Our analysis has identified certain universal mathematical features in
the shear flow of viscoelastic fluids described by differential constitutive relations that
give rise to sour: and related phenomena. The key feature is that there are three widely
separated time scales, each associated with an important non-dimensional number (a. c,
and 1. respectiveiy), when scaled by the dominant relaxation time, A'. Each of these
time scales can be associated with a particular equation in system (JSO) [131. The key
to understanding the dynamics of such systems is fixing the location of the discontinuity
in the strain rate induced by the non-monotone character of the steady shear stress vs.
strain rate.
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